Search and Surveillance in Emergency situations – A GIS based approach to construct near-optimal visibility graphs

CERMID (Centre de recherche en modélisation, information et décision)
Université Laval
Québec, Canada

M. Morin
Irène Abi-Zeid
T.T. Nguyen
L. Lamontagne
P. Maupin

ISCRAM 2013
May 13th
Summary of contributions

• **Integration** of GIS, computational geometry, and integer linear programming
 • to design optimal **visibility** graphs in real time
 • for surveillance **coverage** of an area
 • from **structured** and **unstructured** outdoor environments
 • using **vector** or **raster** data.
Presentation Outline

• Project background
• Methodology
• Experimental results
• Conclusion
Project background

• In an emergency situation, the ability to **observe** an environment, completely or partially, is **crucial** when searching an area for survivors, missing persons, intruders or anomalies

• Where should the **observers** be placed?

• Project funded by Department of National Defence Canada (DRDC – Valcartier) and the Network of Centers of Excellence MITACS
Project background

• Activities are part of a project for optimal **detection search planning**:
 • Where to deploy search efforts in order to maximize probabilities of detection
 • Search and Rescue
 • Surveillance
 • **Input** to search planning:
 • An abstract representation of a terrain in the form of a **visibility graph**
Project background

• General objective: Construct optimal visibility graphs with the smallest number of observers.
• A visibility graph consists of a set of vertices in an environment such that two vertices are connected by an edge if they are *inter-visible*.

![A visibility graph](image-url)
Project background

• Specific objectives
 • Find the **smallest number of observers** necessary, whether they are human spotters, sensors or cameras, and their positions in order to cover an area
 • Given a fixed number of observers, position the observers in such way to **maximize the visibility coverage** of the vertices
Methodology

I. **Processing** terrain data and construct a visibility graph
 - Vector data: computational geometry algorithm
 - Raster data: viewshed analysis in ArcGIS

II. **Optimization** using integer linear programming and the visibility graph
 - Formulate and solve the set covering problem
 - Formulate and solve the maximum coverage problem
Methodology - Processing vector data

Laval University campus – structured environment
Methodology - Processing vector data

• Using ArcGIS:
 • Extract the buildings layer as polygons
 • Add points to the vertices of the polygons
 • Group the connected polygons into a single polygon
Methodology - Processing vector data

- Construct a visibility graph from a bidimensional environment defined by a set of polygons representing obstacles (VisiLibity and CGAL libraries)
- An edge connects two vertices if they are not separated by an obstacle
- Only critical vertices are included in the visibility graph: angle formed by adjacent vertices is larger than 180°
Methodology – Processing vector data

• Structured environment
• Laval University Campus
• Visibility graph: **255 vertices**
Methodology - Processing raster data

- **Unstructured** environment
- Montmorency Forest near Québec city
- Area approximately 66 km²
- Superimpose over the digital terrain elevation model a **uniform grid** of square cells with a width of 50 m
- Assign a vertex to the **center** of each cell
Methodology - Processing raster data

• Using ArcGIS Viewshed Analysis determine inter-visible points within a maximum distance of 1 km
• 6025 vertices
Methodology: Optimization – Minimize number of observers

• Minimize the number of observers on a visibility graph such that all vertices are covered: **set covering** problem

\[
\text{minimize } \sum_{i=1}^{n} y_i \\
\text{such that: } \sum_{i=1}^{n} x_{ji} y_i \geq 1 \\
y_i = 1 \text{ if there is an observer at vertex } i \\
0 \text{ otherwise} \\
x_{ji} = 1 \text{ if vertex } j \text{ is visible from vertex } i \\
0 \text{ otherwise}
\]
Methodology: Optimization – Maximize coverage

- Given a number of observers p, minimize the number of vertices uncovered: **maximum coverage** problem

minimize $\sum_{i=1}^{n} z_i$

subject to

$\sum_{i=1}^{n} y_i = p$

$x_{ji} = 1$ if vertex j is visible from vertex i

0 otherwise

$\sum_{i=1}^{n} x_{ji} y_i = 1 - z_j$

$z_i = 1$ if vertex i is not visible by any observer

0 otherwise

$j = 1..n$

$y_i, z_i \in \{0,1\}$

$y_i = 1$ if there is an observer at vertex i

0 otherwise
Experimental results

- ArcGIS 9.2 with VBA
- C++
- VisiLibity, Boost, CGAL libraries
- CPLEX 12.5, OPL
- All experiments were run on an Intel i7 Q740 processor with 8GB of RAM.
- Structured environment (vector): 255 vertices
- Unstructured environment (raster): 6025 vertices
Experimental results – Structured environment

- Minimum number of observers solved to optimality: 16 to cover 255 vertices
- Obtained in less than 1 second
- No feasible solution if multiple coverage is not allowed
Experimental results – Structured environment

• Minimise number of non-covered vertices
Experimental results – Unstructured environment

- Minimize number of observers to cover 6025 vertices
- After 4 minutes: 121 observers
- After 45 minutes: 119 observers
- After 12 hours 118 observers (best solution)
- Not able to prove optimality on this instance
Experimental results – Unstructured environment

- Minimize number of non-covered vertices out of 6025 vertices – allowed solution time is 10 minutes
Experimental results – Unstructured environment

- Minimize non-coverage of 6025 vertices – maximum allowed time is 10 minutes
- With 100 observers after 10 minutes: 1% is left unobserved
- With 120 observers after 10 minutes: .05% is left unobserved
- For example, after 1 hour, only 2 are left unobserved by 120 observers

<table>
<thead>
<tr>
<th>No. of Observers</th>
<th>Time (s)</th>
<th>No. of non-covered cells</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2.4</td>
<td>5820</td>
</tr>
<tr>
<td>10</td>
<td>3.7</td>
<td>4225</td>
</tr>
<tr>
<td>20</td>
<td>7.5</td>
<td>2923</td>
</tr>
<tr>
<td>30</td>
<td>65.7</td>
<td>1962</td>
</tr>
<tr>
<td>40</td>
<td>420.4</td>
<td>1304</td>
</tr>
<tr>
<td>50</td>
<td>600</td>
<td>848</td>
</tr>
<tr>
<td>60</td>
<td>600</td>
<td>555</td>
</tr>
<tr>
<td>70</td>
<td>600</td>
<td>345</td>
</tr>
<tr>
<td>80</td>
<td>600</td>
<td>223</td>
</tr>
<tr>
<td>90</td>
<td>600</td>
<td>121</td>
</tr>
<tr>
<td>100</td>
<td>600</td>
<td>63</td>
</tr>
<tr>
<td>120</td>
<td>600</td>
<td>37</td>
</tr>
</tbody>
</table>
Conclusion

• We have presented an approach integrating a GIS, Integer linear programming and computational geometry to obtain optimal visibility graphs
 • Minimize number of observers for complete coverage
 • Maximize coverage with a given number of observers
 • Set covering (minimize number of observers) formulation seems more efficient
• Both are NP-hard problems
Conclusion

• In critical situations with short response times, an optimal visibility graph, computed in a reasonable time, provides an efficient basis for real time planning of complex emergency operations

• Future work involves more experimentations and verification of the robustness of the integrated tool
 • Take into account priority area coverage
QUESTIONS?

Thank you for your attention
irene.abi-zeid@osd.ulaval.ca
References

References