Michael Michael Morin - Homepage Michael's FSA page Michael's Linkedin profile Michael's Academia profile Michael's Google Scholar profile Michael's Research Gate profile Michael's Semantic Scholar profile Michael's Orcid profile Email Michael

Menu: [Welcome] [Publications] [Talks and Seminars] [Sources] [Digital Recreation]

On this site: Michael 1
I’m an associate professor in the Department of Operations and Decision Systems of Université Laval. My research focuses on the (joint) application of optimization and machine learning in decision-making contexts for the development of state-of-art AI-based decision systems.

My research interests are:
My virtual home at the Faculty of Business Administration of Université Laval is
I maintain the following Linkedin profile and the following academic profiles Please use the following email address for correspondance purposes: Email Michael michael.morin@fsa.ulaval.ca

On this page you will find the following information: Please also consider visiting the other sections of my website:

Current position

Associate professor at the Department of Operations and Decision Systems of Université Laval [ OSD.ULaval]

Research projects, current students and former students

At this time, this page lists a total of 31 (selected) projects I supervised and a total of 18 (selected) projects I cosupervised. Please note that I chose to exclude all projects prior to 2018. Of course, many of these projects are in collaboration with other researchers (some of the research groups I am or have been part of are listed in Section Related laboratories and research groups ).

By default, I only list the title of the project along with the diploma and completion dates in order to preserve the privacy of my students.

To my students: If you would like to have your name listed along with your project title, please contact me.

Last update: June 2025.

Supervision

Ph.D.

Local Search for Optimal Search and Coverage Path Planning [Recherche locale pour la planification de chemins de couverture et de recherche]
Dominik Richard (Ph.D. in Computer Science, F2024 – …)

Intelligent decision support system for search and rescue [Système intelligent d’aide à la décision pour la recherche et sauvetage]
Amirhossein Esmaeilpour (Ph.D. in Operations Research, F2023 – …)

Data-driven mathematical modeling for search and rescue operations [Modélisation mathématique basée sur les données pour les opérations de recherche et sauvetage]
Saeid Abbasiparizi (Ph.D. in Operations Research, W2022 – …)

M.Sc. with master’s thesis

Search Simulation and Metamodel-Enhanced Optimization [Simulation de recherche et optimisation améliorée par métamodèles]
Adam Boukhari (M.Sc. in Computer Science, F2024 – …)

Local Search for Optimal Search and Coverage Path Planning [Recherche locale pour la planification de chemins de couverture et de recherche]
Dominik Richard (M.Sc. in Computer Science, F2023–W2025)

Machine Learning for Welding Parameter Recommandations [Apprentissage automatique pour la recommandation de paramètres de soudage]
Tom Picherit (M.Sc. in Computer Science, W2022–F2023)

Artificial intelligence and operations research to improve a decision support system for maritime search and rescue [L’intelligence artificielle et la recherche opérationnelle pour améliorer un système d’aide à la décision pour la recherche et le sauvetage maritime]
Thomas Laperrière-Robillard (M.Sc. in Operations Research, W2022 – …)

MBA and M.Sc. with report/essay

Data Mining and Corruption Detection [Forage de données et détection de corruption]
Name withheld (MBA in Business Analytics, F2024–W2025)

Decision Making in Retail with Artificial Intelligence [Prise de décision dans le commerce au détail avec l’intelligence artificielle]
Name withheld (MBA in Business Analytics, F2024)

Analytical Solutions and Data Analysis [Solutions analytiques et analyse de données]
Félix Parisé (M.Sc. in Logistics and Analytics, S2024–F2024)

Derivative-Free Optimization in Engineering [Optimisation boîte noire en ingénierie]
Maxime Babin (MBA in Business Analytics, S2024)

Foundations for Knowledge and Business Data Usage: Literature review [Fondations pour la connaissance et la valorisation des données d’affaires: Revue de littérature]
Name withheld (MBA in Business Analytics, S2024–F2024)

Integrated Analysis of the Impact of Artificial Intelligence in Online Advertising [Analyse intégrée de l’impact de l’intelligence artificielle dans la publicité en ligne]
Rosalie Tcha (MBA in Business Analytics, W2024–S2024)

Sustainable Computing and Sustainable Artificial Intelligence [Calculs et Intelligence artificielle durables]
Gabriel Denis (MBA in Business Analytics, W2024–F2024 (part-time))

Markov Decision Processes in the Airline Industry [Processus de dćision markoviens dans l’industrie aérienne]
Francis Larin (MBA in Business Analytics, S2023–S 2024 (part-time))

Data-Driven Corruption Detection [Détection de la corruption basée sur les données]
Louis-Alexis Pelletier Dubé (MBA in Business Analytics, F2020–F2023 (part-time))

On a data-driven warm start procedure to speedup solvers for optimal route recommendations [Étude d’une approche de démarrage à chaud basée sur les données de résolution pour l’accélération du processus de recommandation d’itinéraires optimaux par un solveur]
Ahmed Benader (MBA in Business Analytics, S2021–W2022 (part-time))

Using neural networks to estimate effort in analyzing software projects to improve project success [Utilisation de réseaux de neurones pour estimer l’effort d’analyse des projets logiciels afin d’améliorer la réussite des projets]
Antonio Collante Caro (MBA in Business Analytics, S2021)

Exploration of an automated data-driven approach to select starting solutions to improve optimal route planning [Exploration d’une approche automatisée basée sur les données visant à choisir les solutions de départ pour améliorer la planification d’itinéraires optimaux]
Name withheld (MBA in Business Analytics, S2020–W2021 (part-time))

Predicting Marginal Values for Real Estate Buyers [Prédiction de la valeur marginale des acheteurs de propriétés]
Name withheld (MBA in Business Analytics, F2019)

Human Resources Analytics: Identifying Information Needs [Analytique en ressources humaines: Identification des besoins en information]
Name withheld (MBA in Business Analytics, F2019)

Forecasting pharmaceutical retail demand [Prévision de la demande pharmaceutique au détail]
Kevin Vachon (MBA in Business Analytics, S2019)

Supervised Learning for Maritime Search Operations Evaluation [Apprentissage supervisé pour l’évaluation d’opérations maritimes de recherche]
Thomas Laperrière-Robillard (MBA in Business Analytics, W2019–S2019 (part-time))

A Study of Thaw Period Forecasting in the Pulp and Paper Industry Context [Une étude de la prévision de la période de dégel dans le contexte de l’industrie papetière]
Name withheld (M.Sc. in Logistics and Analytics, 2018–2019)

Research interns

Machine Learning Approach for Coverage Problems Preprocessing [Apprentissage automatique pour le prétraitement des problèmes de couvertures]
Raghusrinivasan Jayaprakash Venkatesan (MITACS Globalink) (Research Internship, Bachelor, S2023)

Reinforcement Learning for Search and Rescue Coverage Path Planning [Apprentissage par renforcement pour la planification des trajectoires de couverture de recherche et de sauvetage]
Dominik Richard (USRA – NSERC) (Research Internship, Bachelor, S2023)

Modeling and Optimization for Search Operations – The Optimal Searcher Path Problem and its Variants [Modélisation et optimisation pour les opérations de recherche – Le problème du chemin optimal du chercheur et ses variantes]
Eya Nagazi (MITACS Globalink) (Research Internship, Bachelor, S2022)

Experiments With a Machine Learning Approach for Coverage Problems Preprocessing [Expérimentations avec une approche d’apprentissage automatique pour le prétraitement des problèmes de couvertures]
Samayan Bhattacharya (MITACS Globalink) (Research Internship, Bachelor, S2022)

Leveraging Neural Networks for Search and Rescue Coverage Path Planning [Tirer parti des réseaux de neurones pour la planification des chemins de couverture de recherche et de sauvetage]
Dominik Richard (USRA – NSERC) (Research Internship, Bachelor, S2022)

A Machine Learning Approach to Optimization Problems Processing for Surveillance and Search Operations [Une approche d’apprentissage automatique pour le traitement des problèmes d’optimisation pour les opérations de surveillance et de recherche]
Vedant Bahel (MITACS Globalink) (Research Internship, Bachelor, S2021)

Spatial Clustering and Possibility Areas for Maritime Search and Rescue Operations Optimization [Regroupement spatial et aire de possibilité pour l’optimisation d’opérations de recherche et sauvetage maritime]
Vitaliy Kinakh (MITACS Globalink) (Research Internship, Bachelor, S2019)

Cosupervision

Ph.D.

Municipal Asset Management [Gestion des actifs municipaux]
Name withheld (Ph.D. in Operations Research, W2024 – …)

Price and production decision coordination in a divergent production context [Coordination des décisions de prix et de production dans un contexte de production divergent]
Louis Duhem (Ph.D. in Industrial Engineering, Polytechnique Montréal, W2023 – …)

Manufacturing process control framework 4.0 via machine learning, simulation and optimization [Cadre de contrôle de processus manufacturiers 4.0 via apprentissage automatique, simulation et optimisation]
Jean-Thomas Sexton (Ph.D. in Computer Science, W2023 – …)

M.Sc. with master’s thesis

Modeling and analysis of the control process of a robotic welding cell and traceability [Modélisation et analyse du processus de pilotage d’une cellule robotisée de soudage et traçabilité]
Kimia Payami (M.Sc. in Industrial Engineering, F2022–S2024)

Reinforcement learning for intelligent wood dryer control [Apprentissage par renforcement pour un contrôle intelligent d’un séchoir à bois]
François-Alexandre Tremblay (M.Sc. in Computer Science, F2020–W2023)

Smart planer control using a machine learning approach [Contrôle d’une raboteuse intelligente par une approche d’apprentissage automatique]
Jean-Thomas Sexton (M.Sc. in Computer Science, F2020–W2023)

Data-Driven Scheduling for a Robotized Welder [Ordonnancement basé sur les données pour une soudeuse robotisée]
Aminata Koné (M.Sc. in Operations Research, S2020–F2022)

Deep learning for sawmill output prediction [Apprentissage profond pour la prédiction de la sortie d’une usine de sciage]
Vincent Martineau (M.Sc. in Computer Science, W2020–S2022)

MBA and M.Sc. with report/essay

Blood glucose level prediction models in Type-1 Diabetes patients [Modèles prédictifs de la glycémie de patients atteints du diabète de type 1 ]
Name withheld (Research Master Degree in Smart Systems, École Nationale des sciences de l’informatique & Engineering Degree in Computer Sciences, École Nationale des sciences de l’informatique , W2023–S2023)

Pricing in a Competitive Market Using Data Science [Fixation des prix dans un marché compétitif en utilisant les techniques des sciences des données]
Abdelghani Bouaddi (MBA in Business Analytics, S2021)

Adaptive predictive models for real-time decision support [Modèles prédictifs adaptatifs pour l’aide à la décision en temps réel]
Brice Pegwendé Nikiema (MBA in Business Analytics, S2021)

Development of a dashboard using a predictive model for strategic decision support [Développement d’un tableau de bord utilisant un modèle prédictif pour l’aide à la décision stratégique]
Mohamed Ousmane Adamou (MBA in Business Analytics, W2021)

A supervised learning-based feedback loop for adjusting the parameters of a smart planer [Une boucle de rétroaction basée sur l’apprentissage supervisé pour l’ajustement des paramètres d’une raboteuse intelligente]
Name withheld (M.Sc. in Information Technology, Université TÉLUQ, W2020–W2021)

An application of supervised learning to supply chain simulation in a serious game [Une application de l’apprentissage supervisé à la simulation de chaîne d’approvisionnement dans les jeux sérieux]
Name withheld (M.Sc. in Supply Chain Management, W2020)

Learning Pricing Strategies from Manufacturing-Based Market Simulations [Apprendre des stratégies de fixation de prix à partir de simulations de marché manufacturier]
Name withheld (MBA in Business Analytics, S2020)

Research interns

Sawmills’ big data valorization [Valorisation des données massives des scieries]
Name withheld (Bachelor, S2025)

Smart planer control using a machine learning approach [Contrôle d’une raboteuse intelligente par une approche d’apprentissage automatique]
Jean-Thomas Sexton (Bachelor, S2020)

Data Acquisition for a Planing Line with Continuous Re-Drying [Acquisition de données pour une ligne de rabotage avec reséchage en continu]
Name withheld (Bachelor, S2019)

Teaching

Here is a list of some of the courses I taught over the years:

For a given semester, the (R) suffix indicates that I had the responsibility for the course, but did not teach it.

Services to the research community

Below, you will find a list of some of my services to the research community, including:

Reviewer for scientific journals

I have been reviewing for various journals, including:

Program committee member

Reviewer for scientific conferences with peer-reviewed publications

Organizational committee member

Other services

Related links

For each category, the links are in alphabetical order.

Related laboratories and research groups

Canadian associations and organizations

International associations and organizations

Other

Université Laval [ULaval French] [ULaval English]
University of Toronto [UToronto]


[Top]

Last update: June 16, 2025
© Michael Morin, 2008-2025