
Fast(er) Robust Point Cloud Alignment Using

Lie Algebra

Jean-Thomas Sexton1, Michael Morin 2, Philippe Giguère 1, and
Jonathan Gaudreault 1

1Department of Computer Science and Software Engineering,
Université Laval, Québec, QC, Canada

2Department of Operations and Decision Systems, Université
Laval, Québec, QC, Canada

Abstract

We present a novel Lie algebra based Iterative Reweighted Least Squares
(IRLS) algorithm for robust 3D point cloud alignment. We reformulate
the optimal update computation to a compact form which requires only
one pass through the data. Although this reformulation does not alter
the asymptotic computational complexity, it is well suited for con- tem-
porary hardware architectures, yielding significant practical speedups. In
extensive experiments on challenging benchmark datasets with added cor-
respondence corruption, the method is consistently at least four times
faster than previous literature whilst being mathematically equivalent,
demonstrating it is well suited for time-critical applications.

© 2025 IEEE. Personal use of this material is permitted. Permission from IEEE must be
obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new
collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted
component of this work in other works.
This version is the accepted manuscript (postprint). Please refer to the published version:
Sexton, J.-T., M. Morin, P. Giguère, J. Gaudreault (2025). “Fast(er) Robust Point Cloud
Alignment Using Lie Algebra”. Proceedings of the IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS). doipending

https://orcid.org/0000-0002-1008-4303
https://orcid.org/0000-0002-7520-8290
https://orcid.org/0000-0001-5493-8836
doi pending

Fast(er) Robust Point Cloud Alignment Using Lie Algebra

Jean-Thomas Sexton1, Michael Morin2, Philippe Giguère1, Jonathan Gaudreault1

Abstract— We present a novel Lie algebra based Iterative
Reweighted Least Squares (IRLS) algorithm for robust 3D
point cloud alignment. We reformulate the optimal update
computation to a compact form which requires only one pass
through the data. Although this reformulation does not alter the
asymptotic computational complexity, it is well suited for con-
temporary hardware architectures, yielding significant practical
speedups. In extensive experiments on challenging benchmark
datasets with added correspondence corruption, the method is
consistently at least four times faster than previous literature
whilst being mathematically equivalent, demonstrating it is well
suited for time-critical applications.

I. INTRODUCTION

Point cloud alignment seeks the rigid body transform that
best maps one set of 3D points onto another, typically by
minimizing an error metric (e.g., sum of squared distances)
across matched points. This problem is notably central to
the widely used Iterative Closest Points (ICP) algorithm (see
[2] for a robotics-oriented review of ICP variants). As the
size of real-world datasets and the need for real-time perfor-
mance escalate (e.g., in autonomous driving, large-scale 3D
mapping, and robotic manipulation), it becomes increasingly
important to optimize every step in such pipelines, including
the point-to-point alignment phase.

Closed-form solutions, e.g., Horn’s method or Singular
Value Decomposition (SVD), efficiently solve the alignment
problem when correspondences are known. Yet, in practice,
from feature matching in cluttered environments to LiDAR-
based scans with partial overlaps, noise and outliers are often
inevitable. Robust M-estimators, implemented via Iterative
Reweighted Least Squares (IRLS), help mitigate such out-
liers by down-weighting them directly within the optimiza-
tion framework. This makes IRLS-based methods a natural fit
for pose refinement in point cloud registration pipelines that
initially rely on coarse correspondence estimates (e.g., from
RANSAC or an ICP pre-alignment). We refer to [15] for a
comprehensive treatment of IRLS and [16] for a thorough
comparison of robust M-estimators in registration contexts.

A promising avenue for improving efficiency in robust
pose optimization is to adopt a Lie algebra framework,
which has gained prominence in robotics over the past two
decades [3], [4]. In particular, the Lie group SE(3) of 3D
rigid body motions admits a compact, six-parameter local
representation: three for rotation, three for translation. This
avoids explicit constraints (e.g., orthonormality of rotation

1Department of Computer Science and Software Engineering, Université
Laval, Québec, Canada jean-thomas.sexton.1@ulaval.ca,
{jonathan.gaudreault,philippe.giguere}@ift.ulaval.ca

2Department of Operations and Decision Systems, Université Laval,
Québec, Canada michael.morin@osd.ulaval.ca

matrices or normalization of quaternions) and circumvents
singularities, as found with a Euler angles parametrization.
Lie algebra-based approaches have recently demonstrated
accuracy and runtime advantages for specialized rigid-motion
tasks [6], [14]; broader overviews can be found in [5], [7]. 1

Despite these theoretical and practical benefits, the im-
portant subproblem of efficiently computing the optimal
IRLS update in se(3), the Lie algebra of the Lie Group
of rigid-body motion SE(3), remains relatively unexplored.
One elegant solution appears in [8], but as we discuss in
Section II, it requires two passes over the data in an IRLS
context. Importantly, this limits its scalability, as well as
making it less suitable for modern hardware architectures.

We address this gap by introducing a novel scheme for
computing the IRLS update in se(3). Specifically we refor-
mulate the optimal update computation to a compact form
which requires only one pass through the data. Although this
reformulation does not alter the asymptotic computational
complexity, it is well suited for contemporary hardware
architectures, yielding significant practical speedups. We
validate our approach through extensive experiments on the
challenging real-world datasets from [18].

The rest of this paper is organized as follows. In Section II,
we lay down the mathematical formulation of the problem.
Section III presents current approaches. Section IV details
our proposed method, while Section V presents empirical
results showing that our approach consistently achieves over
a speedup factor of four compared to existing methods. We
conclude in Section VI with final insights and directions for
future work.

II. PROBLEM SETTING

Our notation roughly follows the one used in [9] and in the
documentation of [10]. The problem can be posed as follows:
Let 1n be an n×1 vector of ones, and I3 be the 3×3 identity
matrix. Let P̃ be the matrix containing the n 3D points of
the source point cloud in homogeneous coordinates, i.e.

P̃ =

[
p1 · · · pn
1 · · · 1

]
=

[
P
1⊤
n

]
∈ R4×n ,

with Q =
[
q1 · · · qn

]
∈ R3×n be the matrix containing

the corresponding n 3D points of the target point cloud, and
W be an 3n × 3n block diagonal matrix whose diagonal
entries are the weights for every point correspondence,
we write wi for the weight associated with the ith point

1Other methods like Normal Distribution Transform (NDT) use grid-
based probabilistic formulations for dense registration, our work focuses
on refining pose from coarse point-to-point correspondence estimates.
Accordingly, NDT methods are outside the scope of this paper.

correspondence. We note that typically in an IRLS context,
each wi is computed using a robust lost function at each
iteration. Let T be a matrix representing our initial guess for
the rigid transformation between P and Q with T ∈ SE(3)
such that

T =

[
R t
0⊤ 1

]
∈ R4×4 ,

with R ∈ SO(3), t ∈ R3. Let ξ =
[
ω v

]⊤ ∈ R6 be a vector
with ω ∈ R3 being the rotational component and v ∈ R3

being the translational component. We also define the hat
operatorˆ: R6 → se(3) such that

ξ̂ =

[
[ω]× v
0⊤ 0

]
∈ se(3) ,

where []× : R3 → so(3) is the skew-symmetric operator,
i.e.

[ω]× =

 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

 .

We also define the exp operator with exp : se(3) →
SE(3) as the matrix exponential from the Lie algebra to
the Lie group, and the π operator π : R4×n → R3×n

which projects the homogeneous points of a matrix to their
three-dimensional counterparts such that π(P̃) = P . In our
context, this operator is equivalent to taking the first three
rows of the matrix. The residual function is defined as

e(ξ) = vec(Q− π(exp (ξ̂)T P̃)) ∈ R3n , (1)

where the vec operator converts an a× b matrix to an ab×1
vector by stacking its columns, in this case converting a 3×n
matrix into a 3n × 1 vector. The function to be minimized
with IRLS is

E(ξ) =

(
1

2
e(ξ)⊤We(ξ)

)
∈ R . (2)

We also define

ξ∗ = argmin
ξ∈R6

E(ξ) (3)

as the least squares solution. The update ξ∗ is then used to
update the current transformation estimate during optimiza-
tion. Specifically, if Tcurr denotes the current transformation,
the next estimate Tnext is obtained via the hat operator and
exponential map as defined in Section II:

Tnext = exp (ξ̂)Tcurr . (4)

This update step is iteratively applied until convergence
or for a fixed budget of iterations. We note that a complete
treatment of the optimality and convergence of the least
squares solution involving Lie algebra can be found in [8].
All solutions presented in this paper (including ours) being
mathematically equivalent, they share the same previously
studied optimality and convergence properties.

III. CURRENT APPROACHES

In this section, we review established methods for com-
puting the IRLS update in se(3) and discuss their respective
merits and limitations. First, the straightforward approach
(Section III-A) directly solves for the IRLS update without
consideration for the structure of the problem; although
simple and conceptually clear, it requires forming large
intermediate matrices and performing costly matrix multipli-
cations. Next, the adjoint approach (Section III-B) improves
efficiency by leveraging the structure of the Lie group but ne-
cessitates two passes over the data in a IRLS context. These
shortcomings motivate our proposed method (presented in
Section IV), which is both compact and requires only a single
pass through the data.

A. Straightforward Approach

The straightforward approach to compute the IRLS update
ξ∗ is to directly solve for the IRLS update using standard
linear algebra numerical routines. This is analogous to how
a off-the-shelf solver would compute the update without
exploiting any specialized structure. In particular, for ξ = 0,
we have

e(0) = vec(Q− π(exp (0)TP)) = vec(Q− P ′) , (5)

where P̃ ′ ≡ TP and P ′ ≡ π(P̃ ′). One of the basic ideas
of IRLS optimization is to linearize the residual function by
using the first order Taylor expansion around zero:

e(ξ) ≈ e(0) + Jξ , (6)

where J is the 3n × 6 Jacobian. From standard IRLS
formalism, the ξ minimizing E(ξ) is then given by

ξ∗ = −(J⊤WJ)−1J⊤We(0) . (7)

In order to get to the form given by (6), we start with
the basic IRLS principle of linearizing the residual function
using the first order Taylor expansion around zero:

e(ξ) ≈ vec(Q− π((I + ξ̂)T P̃))

= vec(Q− P ′ − π(ξ̂P̃ ′)) . (8)

Using the property of the vec operator that vec(a + b) =
vec(a) + vec(b), the term on the right corresponds to

e(0)− vec(π(ξ̂P̃ ′)) . (9)

We expand the term on the right, given that

ξ̂P̃ ′ =

[
[ω]× v
0⊤ 0

] [
P ′

1⊤
n

]
=

[
[ω]×P

′ + v1⊤
n

1⊤
n

]
, (10)

so that

π(ξ̂P̃ ′) =
[
[ω]×p

′
1 · · · [ω]×p

′
n

]
+ v1⊤ . (11)

Using the property of skew-symmetric matrices [a]×b = a×
b = −b× a = [b]⊤×a = −[b]×a, we obtain

π(ξ̂P̃ ′) = −
[
[p′1]×ω · · · [p′n]×ω

]
+ v1⊤ . (12)

We then apply the vec operator and use the property that
vec(BCA⊤) = (A ⊗ B)vec(C), where ⊗ denotes the
Kronecker product:

vec(π(ξ̂P̃ ′)) =

−[p′1]×
...

−[p′n]×

ω + (1n ⊗ I3)v . (13)

Developing further, we have that

vec(π(ξ̂P̃ ′)) = P ′⊤
[]×

ω + (1n ⊗ I3)v , (14)

where P ′
[]×

is the 3 × 3n matrix containing the skew-
symmetric matrices of every point in P ′. Combining (8),
(9), and (14), we obtain

e(ξ) ≈ e(0)−
[
P ′⊤
[]×

(1n ⊗ I3)
]
ξ . (15)

which matches the form of Eq. (6):

e(ξ) ≈ e(0) + Jξ .

This implies that the Jacobian is

J = −
[
P ′⊤
[]×

(1n ⊗ I3)
]
. (16)

Substituting this into the IRLS update formula (7)

ξ∗ = −(J⊤WJ)−1J⊤We(0) ,

we see that (J⊤WJ)−1 has the following form

(J⊤WJ)−1 =

([
P ′
[]×

(1⊤
n ⊗ I3)

]
W
[
P ′⊤
[]×

(1n ⊗ I3)
])−1

.

(17)
and −J⊤We(0) can be expressed as

−J⊤We(0) =

[
P ′
[]×

(1⊤
n ⊗ I3)

]
We(0) . (18)

Multiplying these two expressions being the straightfor-
ward way to compute the IRLS update ξ∗

B. Adjoint Approach

The more compact current solution from [8], which will
be referred to as the adjoint approach has the following form:

ξ∗ = T M−1T ⊤a , (19)

where
T =

[
R 0

[t]×R R

]
∈ R6×6

is the adjoint representation of T and where

M =

([
I3 [p]×
0 I3

] [
A 0
0 I3

] [
I3 0

−[p]× I3

])
∈ R6×6 ,

a =

[
b− [q]×(Rp+ t)
q− (Rp+ t)

]
∈ R6 .

Here, w =
∑

i wi is the sum of the weights wi associated
with the ith point correspondence, p = 1

w

∑
i wipi, q =

1
w

∑
i wiqi, and

b =

tr([
(
1 0 0

)⊤
]×RB⊤)

tr([
(
0 1 0

)⊤
]×RB⊤)

tr([
(
0 0 1

)⊤
]×RB⊤)

 ∈ R3 ,

with

B =

(
1

w

∑
i

wi(qi − q)(pi − p)⊤

)
∈ R3×3 ,

and

A =

(
− 1

w

∑
i

wi[pi − p]2×

)
∈ R3×3 .

In order to efficiently implement this approach from [8] and
later have a fair comparison with our own approach, one can
avoid the unnecessary 6 × 6 matrix multiplications and the
inversion of a 6× 6 matrix, by using the following form for
M−1:

M−1 =

[
I3 0

−[p]× I3

]−1 [
A 0
0 I3

]−1 [
I3 [p]×
0 I3

]−1

=

[
A−1 −A−1[p]×

[p]×A
−1 −[p]×A

−1[p]× + I

]
,

where A−1 ∈ R3×3 only needs to be computed once. The
strong point of this adjoint approach for the computation of
the IRLS update ξ∗ is that, given weights wi that do not have
to be recomputed during the optimization (as is the case in an
ordinary weighted least squares context), it is very efficient
since M, q, p and b never have to be recomputed after the
first iteration.

C. Limitations

The straightforward approach described requires the for-
mation of large intermediate matrices and necessitates per-
forming expensive matrix multiplications and inversions
without exploiting the underlying structure of the problem,
leading to inefficiencies.

Although more compact and easier to compute than the
straightforward approach, the adjoint approach does have
performance issues in an IRLS context, where weights wi

are not constant during optimization since at each iteration.
Not only is it necessary to update the points of P̃ in order
to obtain new weights wi (and necessary to recompute M,
q, p and b), but this approach also requires two passes over
the data: one to calculate the weighted averages (p and q)
and one to compute the matrices A and B.

On modern CPUs, single-pass algorithms typically outper-
form two-pass approaches—even if both execute the same
total number of operations—because the single-pass strategy
better leverages instruction-level parallelism. Superscalar ar-
chitectures can issue and execute multiple instructions per
clock cycle in parallel, while SIMD (Single Instruction,
Multiple Data) units apply the same operation to multi-
ple data elements concurrently. These features substantially
boost throughput when loop iterations are independent.

By contrast, two-pass algorithms with sequential depen-
dencies limit parallelism, as the second pass cannot begin
until the first one concludes. This restriction often impairs
full utilization of superscalar execution units and SIMD
pipelines. The issue extends to GPUs as well, which rely on
massively parallel threads to maximize throughput; forcing

multiple sequential passes can similarly underutilize avail-
able compute resources.

Moreover, modern CPUs and GPUs rely on efficient
caching and memory access patterns to mitigate latency. A
two-pass approach typically re-reads the same data twice,
increasing the likelihood of cache misses or non-coalesced
GPU memory accesses, both of which degrade performance.
While this explanation necessarily simplifies the intricacies
of contemporary CPU and GPU architectures (for more
detailed discussions, see [1] and [17]), it offers a clear
rationale for favoring single-pass designs in performance-
critical contexts on limited hardware, such as in robotics.

In the next section, we introduce a novel algorithm, for
which the results are mathematically equivalent to the one
presented above. Most importantly, it only requires a single
pass through the data, greatly speeding up its execution on
modern compute hardware.

IV. PROPOSED SINGLE PASS se(3) UPDATE

We now refine the straightforward approach by incor-
porating the problem structure to obtain a more efficient
computation of ξ∗. First, we simply multiply the terms inside
parentheses in (17), and obtain the following 6 × 6 matrix,
which we will express as a 2 × 2 block matrix of 3 × 3
matrices such that

J⊤WJ =

[
−
∑

i wi[p
′
i]
2
×

∑
i wi[p

′
i]×

−
∑

i wi[p
′
i]× wI3

]
(20)

where wi denotes the weight associated with the ith point
correspondence, and w ≡

∑
i wi. Using the property that∑

i wi[p
′
i]× = [

∑
i wip

′
i]×, we note that it is more computa-

tionally efficient to write this expression as

J⊤WJ =

[
−
∑

i wi[p
′
i]
2
× [

∑
i wip

′
i]×

[
∑

i wip
′
i]
⊤
× wI3

]
. (21)

In addition, by exploiting the identity

[p′i]
2
× = p′ip

′
i
T − ∥p′i∥2I ,

the term
∑

i wi[p
′
i]
2
× can be computed without repeatedly

performing general 3×3 matrix multiplications. Instead, one
may accumulate the following scalar sums in a single pass
through the data

Ckl =
∑
i

wi (p
′
i)k(p

′
i)l, k, l ∈ {x, y, z} ,

Then,
∑

i wi[p
′
i]
2
× can be written as−(Cyy + Czz) Cxy Cxz

Cxy −(Cxx + Czz) Cyz

Cxz Cyz −(Cxx + Cyy)

 .

(22)

Avoiding the overhead of general matrix multiplications by
relying solely on scalar accumulations and simple arithmetic
operations. Next, to efficiently inverse the (J⊤WJ) ∈ R6×6

matrix, we will employ the Schur complement. The latter is
a technique commonly used in numerical linear algebra to
efficiently invert 2× 2 block matrices [11], [12]. Consider a

general 2× 2 square block matrix M =

[
A B
C D

]
, we have

two options for inverting this matrix. The first one is the
so-called Schur complement of A, which we will denote as
K ≡ (D − CA−1B):

M−1 =

[
A−1 +A−1BK−1 −A−1BK−1

−K−1CA−1 K−1

]
. (23)

The second option is the so-called Schur complement of D,
which we will denote as S ≡ (A−BD−1C):

M−1 =

[
S−1 −S−1BD−1

−D−1CS−1 D−1 +D−1CS−1BD−1

]
. (24)

The J⊤WJ matrix can be written as

J⊤WJ =

[
A B
B⊤ D

]
, (25)

where A = −
∑

i wi[p
′
i]
2
×, B = [

∑
i wip

′
i]× and D = wI3,

with B⊤ = −B. By using the Schur complement in A,
we would have to invert two 3 × 3 matrices: A and K.
Conversely, by using the Schur complement in D, we have
to inverse D and S. Fortunately, the inverse of D is readily
obtained as D−1 = 1

w I3, leaving us only S ∈ R3×3 to invert.
We therefore have that

(J⊤WJ)−1 =

[
S−1 − 1

wS−1B
1
wBS−1 1

w (I3 − 1
wBS−1B)

]
, (26)

where
S = (A−BD−1C) = A+

1

w
B2

so
S = −

∑
i

wi[p
′
i]
2
× +

1

w
[
∑
i

wip
′
i]
2
× .

We now look at the −J⊤We(0) term

−J⊤We(0) =

[
P ′
[]×

(1⊤
n ⊗ I3)

]
W

 q1 − p′1
...

qn − p′n

 (27)

=

[∑
i wip

′
i × qi∑

i wi(qi − p′i)

]
. (28)

The last expression employs the fact that [p′i]×p
′
i = p′i×p′i =

0. Using (28) and (26), we have that

ξ∗ =

[
S−1 − 1

wS−1B
1
wBS−1 1

w (I3 − 1
wBS−1B)

] [∑
i wip

′
i × qi∑

i wi(qi − p′i)

]
.

(29)

We can further simplify this expression to compute ξ∗ more
efficiently. We first look at the ω∗ component of ξ∗, which
is computed by multiplying the first row of the matrix on
the left with the vector on the right:

ω∗ = S−1
∑
i

wip
′
i × qi −

1

w
S−1B

∑
i

wi(qi − p′i)

= S−1

(∑
i

wip
′
i × qi −

1

w

∑
i

wip
′
i ×
∑
i

wiqi

)
,

(30)

where the factorization of S−1 saves a matrix multiplication
and where using the cross product instead of the multiplica-
tion by the skew-symmetric matrix B is more efficient. Let
Ω = ω∗, we now look at the v∗ component of ξ∗, we use a
similar factorization procedure to obtain

v∗ =
1

w

((∑
i

wip
′
i

)
× Ω+

∑
i

wi(qi − p′i)

)
. (31)

By combining (30) and (31), we obtain the proposed solution
for ξ∗:

ξ∗ =

[
Ω

1
w ((

∑
i wip

′
i)× Ω+

∑
i wi(qi − p′i))

]
. (32)

Every quantity required to compute the IRLS update ξ∗

in (32) is now obtained in a single pass through the data.
This is notably achieved by leveraging the block structures
of J⊤WJ and J⊤e(0) and exploiting properties of skew-
symmetric matrices in order to directly accumulate the scalar
and vector sums needed to compute the update. Moreover, by
a judicious application the Schur complement, the inversion
of the 6 × 6 matrix J⊤WJ is reduced to that of a single
3 × 3 matrix S, computed directly from these aggregated
quantities. Further algebraic simplifications further help re-
duce computational overhead by carefully avoiding repeated
calculations. These modifications ensure that all necessary
terms are computed efficiently in one pass through the data.
Thereby avoiding the limitations described in Section III-C
and taking advantage of modern processor architectures.

V. EXPERIMENTS

A. Dataset

Our evaluation draws on the entire dataset collection from
[18]. This benchmark provides eight real-world point cloud
sequences, and are often used in robotics to benchmark
point cloud registration algorithms. Table I summarizes
these datasets, which encompass both indoor and outdoor
locations. They are intentionally challenging, featuring rapid
changes in scale, repetitive structures, and dynamic elements
such as moving people or vehicles. Because these datasets are
constructed from real measurements from a Hokuyo UTM-
30LX 3D time-of-flight scanner, they also include typical
sensor noise (on the order of 1–3 cm). Figure 1 provides an
illustrative example of the measurement setup.

TABLE I
POINT CLOUD CHARACTERISTICS OF THE 8 DATASETS IN [18].

Dataset Name Nb. Scans Nb. Points per Scan
Apartment 45 365 000
Gazebo Summer 32 170 000
Gazebo Winter 32 153 000
Mountain Plain 31 102 000
Stairs 31 191 000
Wood Autumn 32 178 000
Wood Summer 37 182 000
ETH Hauptgebaude 36 191 000

To isolate the impact of the IRLS update approach inde-
pendently of an upstream point-to-point matching method,

Fig. 1. Example image showing measurement setup for dataset ETH
Hauptgebaude in [18]

we use the following procedure to create point-to-point
correspondences between consecutive scans of each dataset.
First, we align each source scan to its target using the ground-
truth transformation and establish one-to-one matches by
pairing each source point with its nearest neighbour in the
target. This yields a set of correspondences, subject to sensor
noise. We also create 10% global outliers by swapping the
target points of random pairs of matches randomly across
each individual pair of scans, simulating more severe, scene-
wide mismatches. The 10% level is deliberately chosen: it
is large enough to pose a genuine robustness challenge, yet
still low enough for every to converge in under 100 IRLS
iterations without resorting to additional RANSAC-style
pruning, thereby keeping the timing comparison fair. While
our main objective is to compare the computational speed of
the different IRLS update approaches, introducing a small
fraction of outliers (in addition to the already present sensor
noise) ensures that each method is evaluated under realistic
conditions. The outcome is a set of corrupted correspon-
dences for each consecutive scan pair in each dataset, along
with the known ground-truth transformations.

B. Algorithms

We implemented an IRLS optimizer in C++ with the three
distinct previously described methods to compute the IRLS
update ξ∗. The straightforward approach is as described
in Section III-A. In our implementation, we multiply the
weights wi row-wise in order to avoid forming a large
3n× 3n weight matrix and relying on Eigen3’s [13] LDLT
solver to compute the inverse in (17) efficiently. The second,
labelled adjoint, is the approach from [8] reviewed in Sec-
tion III-B. Our own method, based on Eq. (32), is referred
to simply as ours approach. All three share the same Huber
weighting function (with parameter k arbitrarily set to 0.001)
and differ only in how they compute the IRLS.

Each algorithm is applied to consecutive scan pairs across
all datasets (modified as per Section V-A). The same cor-
rupted correspondences are used for all three algorithms and

the initial guess T is always the identity transformation.
The three IRLS updates are mathematically equivalent, so
any performance differences arise purely from computational
and implementation details. We used the well-optimized
library Eigen3 [13] to efficiently handle linear algebra for the
different approaches, recompiled locally to take advantage of
the Intel i7-4820K CPU at 3.7 GHz used on the GNU/Linux
machine used to run all experiments. We note that this
processor supports SIMD through the AVX instruction set
and that Eigen3 was compiled to take advantage of this
feature. All experiments were conducted using a single-
threaded implementation of each approach.

We compare the algorithms by recording the computation
time for a fixed 100 iterations of each method’s optimization
loop. By standardizing iteration counts, we isolate compu-
tational overhead; as mentioned in 2, all three approaches
are mathematically equivalent, and convergence properties
can be found in [8]. This process is repeated for 100 trials
for each algorithm, with only the randomly generated outlier
correspondences differing between trials.

C. Results

Our results clearly demonstrate that the proposed single-
pass update achieves a significant reduction in computational
overhead compared to both the straightforward and adjoint
approaches. In every dataset, our approach consistently
outperforms the adjoint approach by a speedup factor of
approximately four.

Table II summarizes the average computation times of
each approach for consecutive scan pairs per 100 IRLS
iterations across the different datasets, for 100 trials with
the speedup factor of our approach relative to the more
challenging adjoint approach. Figure 2 shows a histogram
of these same computational times.

Although the focus of the study is on computational speed,
we presents for illustration/validation purpose a 2D trajectory
from the Apartment dataset, which was created by composing
the poses for each pair of scans computed by each approach
(Figure 3). In addition, Figures 4 and 5 respectively present
the rotation error (in radians) and the position error (in
radians) for all experiments, the whiskers representing a
95% confidence interval. These three figures illustrate that
the improved computational efficiency does not compromise
the quality of the pose estimates, all three methods showing
strong agreement with the ground truth, despite no global
optimization being performed. The straightforward approach
seems to show some signs of slight numerical instability, per-
haps because of the higher number of operations performed.
As noted earlier, all three methods being mathematically
equivalent, similar agreement is expected and serves more
as a sanity check.

VI. CONCLUSION

We introduced a novel approach for the IRLS update
computation in Lie algebra, for robust point cloud align-
ment. The approach reformulates the update computation
into a compact, single-pass form. This results in significant

Fig. 2. Average time (in milliseconds) for each algorithm and dataset

Fig. 3. 2D trajectory of the Apartment dataset

Fig. 4. Average rotation error (in radians) for each algorithm and dataset
with 95% confidence interval

TABLE II
AVERAGE TIME IN MILLISECONDS FOR EACH ALGORITHM AND

DATASET, WITH SPEEDUP OF OURS OVER ADJOINT

Dataset Straightforward Adjoint Ours Speedup

Apartment 2151.64 999.91 240.25 4.16
Gazebo Summer 915.58 429.68 103.16 4.17
Gazebo Winter 774.57 370.87 89.23 4.16
Mountain Plain 546.90 266.70 64.43 4.14
Stairs 1049.23 499.63 118.13 4.23
Wood Autumn 1074.71 494.87 119.45 4.14
Wood Summer 1067.72 503.31 119.11 4.23
ETH Hauptgebaude 1084.46 509.63 121.63 4.19

Fig. 5. Average position error (in meters) for each algorithm and dataset
with 95% confidence interval

speedups in practice, as confirmed by our experiments on
challenging real-world datasets.

Our approach is well suited for time-critical and resource-
constrained applications in robotics, where real-time perfor-
mance is essential. Future work will focus on integrating this
update strategy into full SLAM pipelines, and adapting the
approach to exploit parallel GPU architectures for further
acceleration. In doing so, we anticipate that the benefits of
our single-pass formulation will extend beyond isolated point
cloud alignment tasks, to broader applications in robotics and
computer vision that involve registration operations.

Our contributions advance the efficient and robust com-
putation of pose estimation given coarse point-to-point cor-
respondence estimates, offering a clear pathway for future
improvements in both theoretical and practical domains.

REFERENCES

[1] J. L. Hennessy and D. A. Patterson, Computer Architecture: A Quan-
titative Approach. 6th ed., San Francisco, CA: Morgan Kaufmann,
2017.

[2] F. Pomerleau, F. Colas, R. Siegwart, and others, A review of point
cloud registration algorithms for mobile robotics, Foundations and
Trends in Robotics, vol. 4, no. 1, pp. 1–104, 2015.

[3] J. Sola, J. Deray, and D. Atchuthan, A micro Lie theory for state
estimation in robotics, arXiv preprint arXiv:1812.01537, 2018.

[4] J. M. Selig, Lie groups and Lie algebras in robotics, in Computational
Noncommutative Algebra and Applications, Springer, 2004, pp. 101–
125.

[5] P.-A. Absil, R. Mahony, and R. Sepulchre, Optimization on manifolds:
Methods and applications, in Recent Advances in Optimization and
its Applications in Engineering: The 14th Belgian-French-German
Conference on Optimization, Springer, 2010, pp. 125–144.

[6] M. Vaidis, J. Laconte, V. Kubelka, and F. Pomerleau, Improving the
Iterative Closest Point Algorithm using Lie Algebra, arXiv preprint
arXiv:2010.11160, 2020.

[7] J. Stillwell, Naive Lie Theory, Springer Science & Business Media,
2008.

[8] T. D. Barfoot, State Estimation for Robotics. Cambridge University
Press, 2024.

[9] R. M. Murray, Z. Li, and S. S. Sastry, A Mathematical Introduction
to Robotic Manipulation. CRC Press, 2017.

[10] F. Dellaert and GTSAM Contributors, borglab/gtsam, version
4.2a8, Georgia Tech Borg Lab, May 2022. [Online]. Available:
https://github.com/borglab/gtsam. [Accessed: Sep. 14, 2024].

[11] L. N. Trefethen and D. Bau, Numerical Linear Algebra. SIAM, 2022.
[12] F. Zhang, The Schur Complement and Its Applications, vol. 4. Springer

Science & Business Media, 2006.
[13] G. Guennebaud, B. Jacob, and others, Eigen v3, 2010. [Online].

Available: http://eigen.tuxfamily.org. [Accessed: Sep. 14, 2024].
[14] F. Dellaert, Visual SLAM tutorial: Bundle adjustment, CVPR tutorial,

2014.
[15] R. Wolke and H. Schwetlick, Iteratively reweighted least squares:

Algorithms, convergence analysis, and numerical comparisons, SIAM
Journal on Scientific and Statistical Computing, vol. 9, no. 5, pp. 907–
921, 1988.

[16] P. Babin, P. Giguere, and F. Pomerleau, Analysis of robust functions
for registration algorithms, International Conference on Robotics and
Automation (ICRA), IEEE, 2019, pp. 1451–1457.

[17] W. H. Wen-Mei, D. B. Kirk, and I. El Hajj, Programming Massively
Parallel Processors: A Hands-on Approach. Morgan Kaufmann, 2022.

[18] F. Pomerleau, M. Liu, F. Colas, and R. Siegwart, Challenging data
sets for point cloud registration algorithms, The International Journal
of Robotics Research, vol. 31, no. 14, pp. 1705–1711, 2012.

