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Abstract 

Maritime search and rescue operations are important humanitarian activities for locating and rescuing survivors in 

distress at sea. This paper investigates the application of supervised learning techniques to improve search operations 

planning by estimating the probability of success of a search operation. Four models are evaluated in the study: random 

forest, K-Nearest Neighbors, Support Vector Machines Regression and Neural Networks. The results show that 

integrating machine learning can significantly reduce computation time for the allocation of search resources. This can 

enhance SAR Optimizer, the current optimization and evaluation module used in the Canadian Coast Guard decision 

support system. By improving the quality of search recommendations, our approach has the potential to improve 

SAR operations and, ultimately, save lives. 
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1. Introduction 

Search and rescue (SAR) involves locating and aiding individuals who are in distress or facing immediate 

danger. Canada is responsible for one of the most challenging and vast SAR zones spanning 18 million square 

kilometers of land and water. One of the Canadian Coast Guard (CCG) roles is to save and protect lives in the 

maritime environment. It coordinates an average of 7,000 incidents per year with a rate of 97% of lives saved 

(Fisheries and Oceans, 2009). Maritime SAR operations in Canada are managed by three joint rescue control 

centers and two sub-control centers. SAR mission coordinators (SMC) are highly trained individuals who are 

tasked with the planning, coordination, control and management of operations. One of the biggest challenges 

for SMCs is deciding where to send search resources. Search planning is time-critical, as survivors must be 

found quickly due to the rapid decrease of survival rates (Xu et al., 2011).  

In order to support SMCs in search planning, the CCG developed the Advanced Search Planning Tool 

(ASPT) decision support system (DSS), also known as CANSARP (Abi-Zeid, et al., 2019). This DSS includes 

SAR Optimizer (Abi-Zeid, et al., 2019), a search planning module involving simulation and optimization based 

on search theory (Stone et al., 2016). The output of SAR Optimizer is a search plan, namely the assignment of 

available search and rescue units (SRU) to rectangles, each enclosing a parallel search pattern. In the 

optimization module, the figure of merit to be maximized is the probability of success (POS), defined as the 

probability of finding the search object. The DSS evaluates multiple combinations of SRU and search 

rectangles to propose a best POS search plan in the planning time allowed.  

The POS of a search plan is computed by simulating, at each time step, the positions of the SRUs and their 

proximity to the object’s estimated position. However, a simulation approach is quite costly in terms of 

computation and time, in a context where a search plan must be produced within minutes, which constrains 

the number of search plans that can be assessed as potential solutions. This motivated us to explore whether 

and how machine learning (ML) can help make the POS computations faster and increase the number of 

candidate search plans evaluated. This study examines and compares the performances of four supervised ML 

algorithms to estimate the probability of success (POS) in search planning (Laperrière-Robillard et al. 2022). 
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2. Background 

After being notified of an incident, the SMC creates, in the ASPT DSS, a SAR case containing all available 

information about the emergency, the characteristics of the vessel, the number of people involved, the last 

known point, possible sightings, relevant communications, etc. The next step is to perform a stochastic drift 

simulation based on Monte Carlo where 5,000 particles, equally likely to be the search object, are seeded using 

a bivariate Gaussian distribution with a standard deviation specified by the user. The particles are then moved 

by simulation in time and space according to a drift model that takes into account search object characteristics, 

surface currents, and winds. The result is a drift model providing the positions of the particles at each time step 

over a simulation horizon. The simulated trajectories of the particles represent equiprobable trajectories of the 

search object (Breivik and Allen, 2008). Subsequently, the SMC identifies available SRUs that can be tasked 

with performing the search operations. Using the drift model and the SRU information, SAR Optimizer 

recommends a search plan. Figure 1 provides a fictitious example of search plans (a parallel pattern and 

enclosing rectangle) for three SRUs. Since the optimization process terminates once the predefined time limit 

has been reached, there is no guarantee that all candidate search plans have been simulated and evaluated. The 

quality of the, possibly sub-optimal, recommended search plans depends not only on the total number of search 

patterns assessed but also on the sequence in which they were evaluated.  

 

Figure 1: Example of a search plan with three SRUs conducting parallel search patterns in enclosed rectangles  

Machine learning is a subfield of artificial intelligence with supervised learning as a particular case where 

a corpus of labeled learning examples is used to train a prediction model (Russell and Norvig, 2021). In 

supervised learning, the objective is to be able to predict a dependent variable (or label), here the POS, as a 

function of independent variables, referred to as learning features, here attributes of search plans. A dataset 

consisting of POS and attributes is used as learning examples. The learning phase, where a function 

transforming the attributes into a POS is followed by a prediction phase where this function is applied to obtain 

the value of a POS corresponding to unseen case attributes. A good model is one that is precise, meaning that 

it predicts correctly the POS of the training set, and that generalizes adequately, meaning that it predicts 

correctly the POS of unseen case attributes, evaluated using a test set. In many cases, fine-tuning of the 

hyperparameters of the ML algorithms is necessary. This consists of randomly picking a number of partitions 

of the training set k and repeating the training with each partition. The performance of the algorithm is obtained 

from the average performances over n sets of k partitions. Metrics to evaluate the performance of an algorithm 

include the mean absolute error (MAE) of the prediction (Kuhn and Johnson, 2013), computed here as the 

absolute difference between predicted and observed POS values.  
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3. Methods and Experiments 

In order to evaluate an ML approach to predict a POS of a search plan, we followed a four-step process.  

First, we generated the learning corpus by using SAR Optimizer to simulate and evaluate search plans. The 

drifting search object was a life raft and the SRU either a helicopter or a fixed-wing aircraft. The available 

search effort of a SRU is measured by the time spent searching. The experiments were conducted with two 

different effort levels, namely 3 and 6 hours. We assumed that a single SRU was on-scene searching. This 

setup resulted in 12 different scenarios (3 drifts × 2 SRUs × 2 effort levels). For each scenario, we generated, 

simulated, and evaluated the POS of almost 9,100 search plans. Therefore, our final corpus contained 12 sets 

of 9,100 evaluated search patterns.  

We then applied four ML algorithms to each scenario, namely K-Nearest Neighbors (KNN), Support Vector 

Machines (SVM) Regression, Random Forest (RF), and Neural Networks (NN). We compared their prediction 

accuracy and the time they took to learn from data. Each model was trained using 70% of the dataset while 

keeping 30% for testing. This process was repeated 10 times with different partitions. The independent 

variables used to predict the POS included features of a search plan, namely the bearing, the area and the length 

and height of the enclosing rectangle, as well as the number and lengths of search and cross legs, and the 

starting coordinates of the search pattern.  

Next, we tested how changing the size of the training set affects prediction accuracy for the ML model 

retained in the previous step. The goal was to find the best predictions while keeping training size small since 

generating the learning corpus is time consuming. In fact, it is not readily available from historical data since 

SAR incidents occur in different locations where the drifts have different characteristics. A smaller training 

set means faster data collection and training, which is important for real-life search missions. However, using 

too little data could lead to inaccurate predictions.  

Finally, we selected the best ML model based on POS prediction quality, learning time, and training set 

size. The retained ML model was applied to predict the POS and rank candidate search plans in SAR Optimizer 

by decreasing POS (rectangle ordering heuristic). This allowed SAR Optimizer to evaluate, by simulation, the 

POS starting with the most promising search plans. In order to evaluate the benefits of using the ML model, 

we then compared the results of SAR Optimizer with and without ML based on the POS obtained. Hereafter, 

SAR Optimizer with the rectangle ordering heuristic is called SAR Optimizer + ML, and the standard version 

of SAR Optimizer is simply called SAR Optimizer. 

4. Results 

4.1. ML Algorithms comparison 

The results of comparing the four ML models showed that although three out of four displayed relatively 

small differences in terms of POS prediction precision, the variability in terms of execution time was 

considerable. Although the SVM model had the shortest average learning time requiring only 0.37 minutes to 

train the model, its predictive performance was consistently inferior. The RF, NN and KNN models needed, 

on average, 51.9, 6.8 and 0.9 minutes respectively. Therefore, we retained the KNN algorithm as a candidate 

algorithm for predicting POS. Full results are available in (Laperrière-Robillard et al. 2022) 

4.2. Prediction quality as a function of training size 

Generating the learning set is an expensive operation. The average time needed to produce it for a scenario 

varies between 28 and 61 minutes when the training set size corresponds to 70% of the full dataset. This is 

obviously not acceptable since a search plan must be proposed in under 5 minutes. We therefore computed the 

average MAE for different training set sizes ranging from 455 search rectangles to 7,735. As expected, the 

prediction’s quality improves (MAE decreases) as the size of the training set increases (Figure 2). However, 

we observed that using a training set of 455 rectangles resulted in an average POS estimation that deviated by 

approximately 0.012 from the actual ground-truth POS value. Considering that the highest POS values for 

search patterns range between 0.305 and 0.941, this margin of error is relatively small in practical terms, 

particularly in scenarios where the best POS exceeds 0.5. 
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Figure 2: The mean average error of the predicted POS versus the number of plans in the training set (adapted from 

Laperrière-Robillard et al., 2022) 

 

4.3. Comparing SAR Optimizer results with and without ML 

  Based on the previous results, we retained the KNN model with 455 search plans in the training set. We 

compared the performances of SAR Optimizer and SAR Optimizer + ML in terms of time needed to attain a 

best POS value. This comparison was computed over 30 runs representing learning with 30 different datasets 

of 455 patterns for 12 scenarios where we let SAR Optimizer run for 45 minutes. Each scenario is based on a 

drift (named A, B, or C) and involves a helicopter flying at 500 feet at 90 knots for 3 hours (case 1), a fixed 

wing flying at 1,000 feet at 120 knots for 6 hours (case 2), a helicopter flying at 90 knots for 3 hours (case 3), 

or a fixed wing flying at 1,000 feet at 120 knots for 6 hours. Table 1 shows that the total time to obtain the 

highest POS search plan was much higher without ML than with ML. This is explained by the fact that without 

ML, SAR Optimizer needed to evaluate a larger number of search plans before reaching the best one in the 

time allocated. Using the ML predicted POS as a heuristic to determine the order in which search plans were 

to be simulated proved very beneficial. 

Table 1. Comparison of SAR Optimizer and SAR Optimizer + ML (adapted from Laperrière-Robillard et al., 2022) 

 SAR Optimizer  SAR Optimizer + ML 

Scenario 

Total time to best 

POS (min.) 

Simulation 

rank of best 

plan POS  

Average time to best POS 

(min.) with 95% CI 

Median rank of best 

plan POS 

A1 20.657 4,301  2.433 ± 0.149 17 

A2 38.211 4,101  4.928 ± 0.378 24 

A3 21.139 4,411  2.519 ± 0.146 29 

A4 38.153 4,103  5.626 ± 0.485 72 

B1 21.909 4,614  3.269 ± 0.517 112 

B2 44.387 4,611  6.790 ± 0.985 130 

B3 25.028 5,323  4.025 ± 0.812 201 

B4 39.028 4,219  6.063 ± 0.991 90 

C1 23.510 4,727  5.015 ± 1.279 340 

C2 43.506 4,730  7.167 ± 1.135 154 

C3 21.285 4,634  2.927 ± 0.355 80 

C4 42.947 4,631  6.990 ± 1.362 154 
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5. Conclusions 

In this paper, we set out to explore whether machine learning can improve SAR Optimizer in the Canadian 

maritime SAR planning DSS by developing higher POS search plans in less time. Our experiments showed 

that the K-Nearest Neighbors algorithm, trained on a relatively small training dataset, can provide accurate 

predictions within a reasonable timeframe. Given that SAR Optimizer can be stopped prematurely due to time 

constraints, we were able to improve the quality of the proposed search plans by guiding SAR Optimizer 

towards evaluating more promising search plans first, based on their ML-predicted POS. 

Although training the ML model requires an initial set of simulated search models, we found that only a 

small subset is needed to effectively train the model. Our experimental results indicate that SAR Optimizer + 

ML outperforms the standard SAR Optimizer. Although we have specifically applied our approach to a 

maritime SAR decision support system, the method is generalizable and can be integrated into any simulation-

based decision support system.  

Our contribution consists of developing, testing and evaluating a new approach integrating ML to partially 

replace computationally expensive simulations in the Canadian SAR planning DSS. Future work includes 

extending our approach to multiple SRUs on scene. 

 

References 

Abi-Zeid, I., Morin, M. and Nilo, O. (2019). Decision Support for Planning Maritime Search and Rescue 

Operations in Canada. In Filipe, J., Smialek, M., Brodsky, A., Hammoudi, S. Eds Proceedings of International 

Conference on Enterprise Information Systems, Vol. 1, 316-327, Heraklion, Greece. 

https://doi.org/10.5220/0007730303280339 

Fisheries and Oceans Canada (2009). Canadian Coast Guard Information Kit. 36 pages. DFO 2009-1563. 

Kuhn, M., & Johnson, K. (2013). Applied predictive modeling (Vol. 26, p. 13). New York: Springer.  

Laperrière-Robillard, T., Morin, M., & Abi-Zeid, I. (2022). Supervised learning for maritime search operations: 

An artificial intelligence approach to search efficiency evaluation. Expert Systems with Applications, 206, 117857.  

Russell, S., Norvig, P., 2021. Artificial Intelligence: A Modern Approach, Global Edition 4th, 4th ed. Pearson.  

Stone, L. D., Royset, J. O., & Washburn, A. R. (2016). Optimal Search for Moving Targets (Vol. 237). Springer 

International Publishing. https://doi.org/10.1007/978-3-319-26899-6 

Xu, X., Turner, C. A., & Santee, W. R. (2011). Survival time prediction in marine environments. Journal of 

Thermal Biology, 36(6), 340–345. https://doi.org/10.1016/j.jtherbio.2011.06.009 

 

Acknowledgments  

The authors wish the ASPT Working group and the SMCs for their support during the project. Special 

thanks to the project manager, the technical team from the Canadian Coast Guard College in Sydney, and to 

Oscar Nilo for their support.  

Funding: The SAR Optimizer decision support system was developed under Canadian Government, 

contract number FP802-150046 to Neosoft Technologies. This research was funded by Natural Sciences and 

Engineering Research Council of Canada [grant number RGPIN-2021-03495, DGECR-2021-00189] and by 

Fonds de recherche du Québec – Nature et technologies [grant number 2017-B3-199085]. 


